AASHTO TIG - CAST
Construction Analysis Software Tools

Traffic Modeling and Construction Analysis Tools
for Minimizing Costs and Impacts for Rehabilitation and Reconstruction Projects

AASHTO 2006 Annual Meeting

Rick Land
Chief Engineer

California Department of Transportation
The Challenge We Face

• Highway infrastructure must be renewed
 – Many pavements have reached their design life
 – We must maintain, rehabilitate, and reconstruct highways under traffic

• Impacts of construction to the general public must be minimized
 – Lane closures create adverse impacts to motorists, local communities, and businesses
 – Work zones responsible for about 12 percent of highway traffic delay
 – Safety: 40,000 injuries, 1028 fatalities in work zones in USA in 2003

• These are conflicting objectives
New Federal Rule

• Requires preconstruction analysis, including:
 • State-wide process
 – Work zone assessment & management procedures
 – Work zone crash and operation data collection
 – Bi-annual training and process review
 • Project-level procedures
 – Transportation Management Plan (TMP) in PS&E
 – Consideration in TMP of traffic control devices, network operations, public outreach
 – Contractor incentives for safety and mobility performance
 – Assignment of person responsible for TMP, safety and mobility
How Do We Meet This Challenge

• Integrated analysis approach to balance and optimize competing objectives
 – Longer lasting pavements
 – Faster delivery of construction
 – Tolerable traffic delays
 – Within agency budget and scope

• AASHTO TIG: Construction Analysis Software Tools (CAST) Promotion
 – Recently conducted a survey for the federal rule
 – Identify and publicize tools for this challenge
 – Seek more participating state DOTs
AASHTO Survey of State DOTs: 34 states responding

Have you developed a policy/procedure to deal with the new Federal work zone rule?

- Yes, 47%
- No, 53%

If there were a tool available for minimizing costs and delay, would you be interested?

- Yes, 97%
- No, 3%
Solutions to Help Implement New Federal Rule: Tools

• Microscopic traffic simulation software
 – Examples: VISSIM, Paramics, MITSIM, Corsim
 – Assess the work zone impact on network
 – Graphics are very useful for public outreach
 – Expensive to implement, other less expensive tools may provide results of similar accuracy

• Construction Schedule Comparison Tools
 – Example: CA4PRS (FHWA pooled fund study (CA, MN, TX, WA))
 – A software tool to calculate construction duration and traffic delay for different strategies: pavement structures, traffic closures, and construction logistics
Analyses a DOT Can Perform with These Tools

• Depending on tool selected:
 – ‘What-if’ scenarios evaluation
 – Construction schedule; Traffic delay and user cost; Agency cost
 – Pre-construction analysis in planning, scoping, and design
 – Multi-discipline team solution
 – Optimize local signal timing
 – Evaluate closure impact on detour routes
 – Compare various contracting methods
Examples
CA4PRS Implementation Projects

I-710 Compton Project
In development

I-10 Pomona Project
1999

I-710 Long Beach Project
2003

I-15 Devore Project
2004

I-15 Ontario Project
In development

Use by other sponsoring DOTs
- I-5 Seattle (WA), PCC
- I-494 St. Paul (MN), AC
Case Study on I-15 Devore Reconstruction Project
I-15 Devore Project Summary
Southern California (San Bernardino)

• Each direction: outside truck lane reconstructed, slab replacements in second truck lane
 – Project is 3 miles long

• About 130,000 ADT (15% heavy trucks)
 – Unique traffic pattern: weekday commuter and weekend leisure (to and from Las Vegas)

• Two truck lane reconstruction: 3-mile stretch
 – Rebuilt with 12” PCC (12-hour mix) with 6” AC base
 – One roadbed full closure with counter-flow traffic
 – Two 9-days continuous closures (24/7 operations)

• Saved $6M agency and $2M user cost with CA4PRS
I-15 Devore Pre-Construction Analysis with CA4PRS: Schedule-Traffic-Cost

<table>
<thead>
<tr>
<th>Construction Scenario</th>
<th>Schedule Comparison</th>
<th>Cost Comparison ($M)</th>
<th>Max. Peak Delay (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Closures</td>
<td>Closure Hours</td>
<td>User Delay</td>
</tr>
<tr>
<td>One Roadbed Continuous (24/7)</td>
<td>2</td>
<td>400</td>
<td>5.0</td>
</tr>
<tr>
<td>72-Hour Weekday Continuous</td>
<td>8</td>
<td>512</td>
<td>5.0</td>
</tr>
<tr>
<td>55-Hour Weekend Continuous</td>
<td>10</td>
<td>550</td>
<td>10.0</td>
</tr>
<tr>
<td>10-Hour Night-time Closures</td>
<td>220</td>
<td>2,200</td>
<td>7.0</td>
</tr>
</tbody>
</table>
I-15 in Salt Lake County
Microscopic Simulation for I-15 Reconstruction Projects in Utah

- Used for 5 projects (17 miles) in Salt Lake City
 - $1.4 billion of work, 142 bridges, 3 big interchanges
- Alternatives considered: Design-Build, Design-Bid-Build, No-build
- Used VISUM: Microscopic traffic simulation
 - Network traffic analysis to calculate user delay cost
- Results showed Design-Build better
 - Saved $500 million of user delay cost
 - Reduced schedule from 9 years to 4 years
 - Fewer accidents
- Compared various traffic control plans
What AASHTO is doing

• Established AASHTO TIG - CAST
 – Made up of FHWA, AASHTO, & several states using software tools
 – Intended to evaluate the various tools and provide information to States on what each one does.

• Upcoming Activities
 – FHWA & AASHTO working on Expert User Panel
 – Brochures and references are being made available

• For Latest Information
 – http://tig.transportation.org/?siteid=57&pageid=1824
Thank you!
More Information?

• Contact
 – Keith Platte (AASHTO): (202) 624-7830
 Fax: (202) 624-5469
 Email: kplatte@aashto.org
 – Michael Samadian (Caltrans): (916) 324-2048
 E-mail: Michael_M_Samadian@dot.ca.gov

• Web Address (Again)

 http://tig.transportation.org/?siteid=57&pageid=1824